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Abstract

Digitoxin belongs to a naturally occurring class of cardiac glycosides (CG); digitoxin is clinically 

approved for heart failure and known for its anti-cancer effects against non-small lung cancer cells 

(NSCLC). However, concerns associated with its narrow therapeutic index and its concentration-

dependent mechanism of action are rising. Thus, before digitoxin implementation in designing and 

developing safer and more effective CG-based anti-cancer therapies, its pharmacological and 

safety profiles need to be fully elucidated. In this research we used a combinatorial approach to 

evaluate the anti-cancer mechanisms of digitoxin in real-time. Our approach employed a non-

invasive electric cell impedance sensing technique as a proxy to monitor NSCLC behavior post-

exposure to toxic, therapeutic and sub-therapeutic concentrations of the drug. By developing 

structure–function combinatorial relations we showed that digitoxin targets cancer cells in a time 

and dose-dependant manner by activating pro-apoptotic and anti-proliferative signaling cascades 

that results in strengthening cellular adhesion and sequestration of key regulatory proliferation 

protein from the nucleus.
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1. Introduction

Digitoxin is a natural occurring cardiac glycoside (CG) (Elbaz et al., 2012a) with a 

prolonged half-life, a well-established clinical profile, a narrow therapeutic window (Elbaz 

et al., 2012a), and increased ability to readily cross both the blood brain and the placental 

barriers (Storstein et al., 1979). Laboratory investigations suggested that digitoxin exhibits 

high selectivity towards cancer cells when compared to healthy cells (Elbaz et al., 2012a; 

López-Lázaro et al., 2006) making the drug a viable chemotherapeutic alternative against 

several types of cancer from leukemia, to pancreatic and lung cancers (López-Lázaro, 2007; 

Winnicka et al., 2006).

The anti-cancer mechanisms induced by digitoxin have been extensively studied and are 

mainly associated with the drug's ability to manipulate intracellular ion hemostasis which 

led to a downstream signaling cascade eventually inducing apoptosis and cell cycle arrest 

(Elbaz et al., 2012b). In particular, in vitro studies showed that exposure of non-small lung 

cells, renal, pancreatic and breast cells to micromolar concentrations of digitoxin (0.5–5 μM) 

inhibits Na+/K+-ATPase pump activity (López-Lázaro, 2007; Newman et al., 2008), induces 

calcium-dependent activation of caspases and other hydrolytic enzymes (Einbond et al., 

2008; Elbaz et al., 2012a), causes generation of reactive oxygen species (Prassas et al., 

2011), activates the cell-cycle inhibitor p21Cip1 (Prassas et al., 2011), directs the inhibition 

of topoisomerase activity and hypoxia-inducible factor1a synthesis (Sun et al., 2013), and 

ultimately reduces viability and cell proliferation (Elbaz et al., 2012a; Menger et al., 2013). 

Complementary, cellular exposure to nanomolar concentrations of digitoxin (10–100 nM) 

leads to inhibition of (HIF-1) and topoisomerase II synthesis (Prassas et al., 2011), 

activation of phospholipase C (Elbaz et al., 2012a; Ho et al., 1987), phosphatidylinositol-3-

kinase (PI3K) (Ho et al., 1987), tyrosine kinase (Src) (Elbaz et al., 2012a; Jagielska et al., 

2009), mitogen-activated protein kinase (MAPK) (Prassas et al., 2011), affects cell cycle 

and anoikis (Pongrakhananon et al., 2014) inducing alternations in membrane fluidity (Larre 

et al., 2010; Xie and Cai, 2003), ultimately leading to cell apoptosis (Lopez-Lazaro et al., 

2005). However, the nature of these in vitro studies only allowed for discrete time points 

monitoring and limited analysis of the cellular functions upon exposure, all after invasive or 

destructive preparation of the samples, as well as labor intensive and time consuming 

analysis. Therefore, further studies are needed to better characterize the pharmacological and 

safety profiles of digitoxin before its chemotherapeutic implementation, especially 

considering that therapeutic concentrations of digitoxin varies according to the age and 

weight of the patient, generally ranging from 26 to 46 nM (Wu et al., 2001). Such studies do 

not only have to account for the narrow therapeutic window or drug's dose-dependent and 

selective apoptosis to cancer cells (Newman et al., 2008; Xie and Cai, 2003), but also need 

to allow monitoring of the cellular systems without lag time between sample collection and 

data analysis.

Electric cell–substrate impedance sensing (ECIS) is a noninvasive and quantitative form of 

cell-based sensing that utilizes identical small gold-film electrodes deposited on the bottom 

of cell culture dishes to measure the cellular resistance and its alteration upon changes in cell 

morphology, spreading, attachment and migration (Arndt et al., 2004; Spegel et al., 2008), 

all as a function of applied frequencies and in real-time (Giaever and Keese, 1984; Wegener 
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et al., 2000a). The applicability of ECIS was extended to inhibition assays for cytochalasin-

D (cytoskeletal inhibitor) (Sapper et al., 2006), prostaglandin E2 (inflammatory mediator) 

(Wang et al., 1995), bacterial protease (Itagaki et al., 2011), or platelet-activating factors that 

affect in cellular adhesion (Melnikova et al., 2009).

By combining standard in vitro cell viability and cell-based cytotoxicity assays with ECIS, 

we aim to investigate the anti-proliferative and pro-apoptotic mechanisms of non-small lung 

cancer cells (NSCLC) exposed to different concentrations of digitoxin in real-time. NCI-

H460 cells were chosen as model NSCLC based on their sensitivity to digitoxin (López-

Lázaro, 2007; Wang et al., 2010) and increased resistance to chemotherapy (Mijatovic et al., 

2006a,b). We hypothesized that NCI-H460 exposure to toxic (80 nM), therapeutic (40 nM) 

and sub-therapeutic (25 and 10 nM) concentrations of digitoxin is associated with changes in 

the cellular viability that can be monitored using an individual cell as a primary transducer 

and recording its real-time alterations in morphology and adhesion profile. Further, based on 

the key role of the cyclin-dependent kinase-4 (CDK4) in regulation of cell proliferation and 

cell cycle (Gulappa et al., 2013; Si and Liu, 2001), we hypothesized that exposure to 

digitoxin targets cellular adhesion pathways in a dose and time-dependent manner by 

sequestering CDK4 in the cytoplasm and thus reducing its nuclear levels. Further, CDK4 

association with viable candidates responsible for cellular junctions formation can be 

monitored in real-time as a change in the cellular attachment profile. Our findings 

underscore the potential of digitoxin to be used as the next generation of chemotherapeutic 

drugs that target cell adhesion and cell cycle profiles for improved anti-cancer activity.

2. Materials and methods

2.1. Cell culture and treatment

Human lung cancer epithelial cells (NCI-H460; ATCC, VA) were cultured in Roswell Park 

Memorial Institute-1640 medium (RPMI-1640; Sigma Chemicals, MO) supplemented with 

10% fetal bovine serum (FBS; Atlanta Biologicals, GA), 2 mM L-glutamine and 100-

units/mL penicillin/streptomycin (Sigma Chemicals, MO) and maintained in a humidified 

atmosphere at 37 °C under 5% CO2. Cells were passaged regularly using 0.25% (w/v) 

trypsin (Molecular Probles, OR) with 1.5 mM ethylene diaminetetracetic acid (EDTA; 

Molecular Probles, OR). Stock concentrations of digitoxin (Sigma Chemicals, MO) were 

made in dimethyl sulfoxide (DMSO; Sigma Chemicals, MO) and diluted to 1000x exposure 

concentrations as previously described (Elbaz et al., 2012b). Digitoxin exposure was 

performed in a medium containing 1% FBS, 2 mM L-glutamine and 100-units/mL penicillin/

streptomycin. The concentration of FBS was reduced due to existing concerns regarding 

digitoxin's interaction with serum proteins (Baggot and Davis, 1973) and to better 

approximate the minimum concentrations and times that were required to achieve drugs’ 

activity in vitro (Elbaz et al., 2012b).

2.2. Apoptosis assay

Cells were seeded overnight in 12-well plates (Fisher, PA) at 2 × 105 cell/mL and treated 

with 0, 10, 25, 40 and 80 nM digitoxin for 24, 48 and 72 h respectively. After treatment, the 

cells were incubated with 10 μg/mL Hoechst-33342 (Molecular Probles, OR) for 30 min. 
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The percentage of cells having intensely condensed chromatin and/or fragmented nuclei was 

scored using fluorescence microscope (Leica Microsystems, IL). Approximately 1000 nuclei 

from ten random fields were analyzed for each sample. The apoptotic percentage was 

calculated as the percentage of cells with apoptotic nuclei over the total number of cells per 

field of view.

2.3. Western blot analysis

Cells were seeded overnight in 6-well plates at a density of 6 × 105 cell/well, and treated 

with 0, 10 or 25 nM digitoxin in 0.1% DMSO for 24 h. Subsequently, cells were placed on 

ice and lysed for 30 min in a lysis buffer containing 2% Triton X-100, 1% sodium dodecyle 

sulfate (SDS), 100 mM sodium chloride (NaCl), 10 mM tris-hydrochloric acid (HCl), 

complete mini cocktail protease inhibitors (all reagents are purchased from Roche, IN) and 1 

mM EDTA insoluble cellular debris was pelleted by centrifugation at 4 °C and 16,000 × g 

for 15 min. The supernatant was collected and used to determine the total protein content 

using standard Bicinchoninic Acid Assay (BCA, Thermo Scientific, IL). Briefly, working 

reagent was prepared according to the manufacturer instructions by mixing 50 parts of 

reagent A with 1 part of reagent B (reagents included with kit). Two μL of each sample was 

added to a 96-well plate and incubated with 200 μL of the working reagent at 37 °C for 30 

min; experiments were performed in duplicates. Control calibration curves were prepared 

using serial dilutions of standard bovine serum albumin (BSA). Absorbance at 562 nm was 

recorded on a BioTek 96-plate reader (BioTek, Winooski, VT).

The supernatant was separated by a 10% SDS–PAGE gel and transferred to polyvinylidene 

fluoride (PVDF) membranes using the iBlot® Dry Blotting System (Invitrogen, CA). 

Membranes were blocked in 5% skim milk in Tris-buffered saline (TBST, 25 mM Tris–HCl, 

125 mM NaCl, and 0.1% Tween-20; Sigma Chemicals, MO) for 1 h at room temperature, 

and subsequently incubated with anti-CDK4 primary antibody (Cell Signaling, MA) at 4 °C 

overnight. The membranes were subsequently washed three times in phosphate buffer saline 

(PBS; Lonza, MD) containing 1% Tween-20 for 10 min each, incubated with horseradish 

peroxidase-conjugated secondary antibody (Cell Signaling, MA) for 1 h at room 

temperature, then washed again for three more times each for 10 min in TBST. Finally, the 

samples were analyzed by chemiluminescence (Supersignal West Pico, IL). Band 

quantification via densitometry was performed using ImageJ software, version 10.2.

2.4. Trypan-blue exclusion assay

NCI-H460 cells were seeded overnight in 12-well plates at a density of 2 × 105 cell/mL, and 

treated with 0, 10, 25, 40 or 80 nM digitoxin for 24, 48, and 72 h, respectively. Cells were 

subsequently washed with PBS, trypsinized (0.25%), suspended in 10% media and stained 

with 0.4% trypan-blue (Invitrogen, CA) at 1:1 volume ratio and analyzed using Countess 

automated cell counter (Invitrogen, CA).

2.5. Electric cell–substrate impedance sensing (ECIS)

Real-time quantification of cellular behavior was conducted using an electric cell impedance 

sensing instrument (ECIS-ZΘ, Applied Biophysics, NY). In one set of experiments, two 

ECIS arrays (8W10E+), each containing 8-wells with 40 gold electrodes, were 
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simultaneously employed to provide concomitant measurements of 16 samples at multiple 

frequencies. Prior to any experiment, the gold electrodes were stabilized for 3 h in 400 μl 

RPMI media to account for electrode variances and to create a reference line associated with 

free electrodes; subsequently, the array holder was placed in a humidified incubator at 37 °C 

and 5% CO2 to provide optimal conditions for cellular growth. NCI-H460 cells were added 

at a density of 2 × 105 cell/mL in a volume of 400 μl/well. Cells were allowed to settle and 

grow over the gold electrodes and form a confluent monolayer for 24 h. The formation of 

the cellular mono-layer was indicated as a settlement in the resistance value with minor 

fluctuation caused by cellular micromotion (Arndt et al., 2004; Giaever and Keese, 1991; 

Wegener et al., 2000a). Upon monolayer formation cells were treated with 0, 10, 25, 40 or 

80 nM digitoxin and their cellular behavior was monitored for 48 h post-exposure.

2.6. Statistical analysis

Results are presented as mean ± standard deviation. Experiments (viability, apoptosis and 

Western blot) were performed in duplicates and repeated at least 3 times. ECIS experiments 

were performed in duplicates and repeated at least four times, for a total of minimum 8 

replicates per dose. Changes in the behavior of the cells (i.e., resistance) were recorded 

every 180 s for the duration of the experiments with each time point being an average of 16 

replicates (2 arrays with 8 wells each). Two-way analysis of variance and unpaired two-

tailed Student's t-test were performed using JMP 8.0 (SAS Institute) and SigmaPlot 10.0 

(Systat Software Inc.). Results were considered significant for *p < 0.05.

3. Results

3.1. Digitoxin induced apoptosis in a time and dose-dependent manner

To evaluate the effects of digitoxin on cellular apoptosis, confluent monolayers of human 

lung cancer (NCI-H460) cells were exposed to toxic, therapeutic and sub-therapeutic 

concentrations of digitoxin for 24, 48 and 72 h respectively. Visual inspection of the 24 h 

exposed cells showed minor differences in their nuclear morphology for the cells treated 

with 10 nM (5%) and 25 nM (15%) digitoxin when compared to the untreated cells (Fig. 

1A). In contrast, the nuclei of the cells treated with 40 and 80 nM digitoxin showed major 

changes (≥50%) in their morphologies, i.e., rounding, swelling, condensation and 

fragmentation. Such changes are considered early indicators of cellular apoptosis (Furukawa 

et al., 2007; Yuan et al., 2007).

The percentage of apoptotic cells at 24, 48 and 72 h post-exposure to toxic, therapeutic and 

sub-therapeutic concentrations of digitoxin is shown in Fig. 1B. Analysis of variance 

showed that the NCI-H460 apoptosis was both dose and time-dependent. In particular, 24 h 

after exposure, the cells treated with 10 nM showed no significant changes in their apoptotic 

percentage; however, increased apoptosis was noticed after 48 and 72 h of digitoxin 

exposure. Cells exposed to 25, 40 and 80 nM digitoxin exhibited higher apoptosis within 

first 24 h with a significant increase after 48 and 72 h, respectively. Values for the IC50 

(half-inhibition concentration) derivated using a three-parameter sigmoid regression analysis 

were 43.4–36.6 nM and 31.6 nM at 24, 48 and 72 h post-exposure respectively.
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3.2. Digitoxin inhibited cellular proliferation

To study the effects of toxic, therapeutic and sub-therapeutic concentrations of digitoxin on 

the NCI-H460 cell proliferation, a live cell exclusion assay was performed. The results 

showed that exposure to digitoxin caused inhibition of cellular proliferation in a dose and 

time-dependent manner (Fig. 2A). Specifically, no differences relative to controls were 

noticed 24 h post-exposure for the cells treated with 10 nM digitoxin; however, significant 

inhibitory effects were observed after 48 (18%) and 72 h (27%) respectively. For the cells 

treated with 25, 40 and 80 nM digitoxin, the decrease in the live cell counts was significant 

within the first 24 h with 35%, 54% and 82% respectively. This subsequently increased to 

43%, 70% and 99% after 48 h exposure and 70%, 85% and 100% after 72 h, respectively.

Since inhibition of cell proliferation was the major effect 24 h post-exposure to sub-

therapeutic concentrations of digitoxin, we also examined the expression of cyclin-

dependent kinases-4 (CDK4), a key regulatory protein that controls cellular proliferation and 

cell cycle progression at the G1/S phase (Gulappa et al., 2013; Si and Liu, 2001). Western 

blot analysis showed significant decrease in the expression of CDK4 after exposure to both 

10 and 25 nM, with a 35% and 60% reduction in the CDK4 expression relative to expression 

of control β-actin (Fig. 2B and C).

3.3. Real-time cell monitoring using electric cell impedance sensing

Real-time analysis from the time of cell inoculation into the wells, to the formation of a 

confluent monolayer, and subsequently 48 h post-exposure to toxic, therapeutic and sub-

therapeutic concentrations of digitoxin were performed using electric cell impedance 

sensing (ECIS). Previous studies showed that cells immobilized onto gold electrodes have 

similar behaviors with their counterparts immobilized onto polystyrene surfaces (Giaever 

and Keese, 1991; Wegener et al., 2000b). Fig. 3A shows an eight well ECIS array with inter-

finger-like arrangement and the current pathways contributing to the resistance 

measurements. Once the cells spread onto the gold electrodes, their insulating nature of the 

plasma membrane constricted the current flow in the spaces beneath the basal membrane 

and the electrode surface as well as in the paracellular spaces between adjacent cells, leading 

to the recorded resistance (Giaever and Keese, 1991, 1993). Alpha is a function of the 

distance between the basal membrane and cellular radius according to the following 

equation:

(1)

where ρ represents the specific resistivity of the electrolyte (i.e., culture media) underneath 

the cells, h represents the distance at which the cells hover above the electrode, and Rc is the 

cellular radius.

The changes in NCI-H460 resistance were mathematically fitted and are shown in Fig. 3B. 

The monolayer resistance value was normalized to the base level of the cell free electrodes 

at 4 kHz operational frequency; data was collected every 180 s (Supplementary information 

Fig. S1). Region A reflects the changes in resistance from inoculation to the cells settling 

onto the electrodes and includes the lag period or the time required by the cells to overcome 
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the disturbance caused by inoculation. This region was fitted using a linear computational 

model (Chen et al., 2012; Xiao and Luong, 2005). In particular, for t < 2 h

(2)

where R(t) is the resistance value of the cells setteled onto the electrodes, and a and b are 

parameters estimated using a least-square algorithm. Region B was directly associated with 

the cells ability to spread and form increased cell–cell contacts. The starting point for region 

B was determined by finding the theoretical point where the two mathematical models 

intercept (i.e., the linear model for region A and the exponential fit for region B 

respectively). Specifically, for t ≥ τ,

(3)

where R1 and k are parameters estimated by the least-square algorithm and τ is the lag 

period. Using a Taylor's series expansion of a first and second orders, the lag period was 

found to be 1 h 44 min and 1 h 46 min, respectively, for the NCI-H460 cells. Upon complete 

coverage of the gold electrodes, cellular proliferation was hindered by contact inhibition 

shown in region C and modeled using a second order polynomial. Specifically,

(4)

where R(t) is the resistance of cells the reaching the hindered growth and a, b and c are 

parameters estimated using the least-square algorithm. Finally, upon the complete formation 

of cell monolayer, the normalized resistance reached a plateau, i.e., region D.

Cell attachment and monolayer formation was further confirmed by evaluating the changes 

in α (Arndt et al., 2004; Giaever and Keese, 1991, 1993) (Fig. 3C). An increase in α 

indicates a decrease in the distance between the gold electrode and the cell basal membrane 

(h). The results showed that the changes in α followed a similar trend to the changes in the 

cellular resistance, with no fluctuations being observed after complete formation of the cell 

monolayer.

Twenty-four hours post-inoculation, the confluent monolayer was exposed to toxic, 

therapeutic and sub-therapeutic concentrations of digitoxin. Fig. 4A shows the 

representative normalized resistance of control (untreated) and cells treated with different 

concentrations of digitoxin as measured every 3 min for a total of 48 h. An initial increase in 

resistance with a slower rate for 10 and 25 nM (sub-therapeutic) and a higher rate for both 

40 (therapeutic) and 80 nM (toxic) concentrations was recorded. Upon stabilization (~5 h 

post-exposure), the resistance of the cells exposed to 10 and 25 nM digitoxin showed higher 

absolute values than the resistance of the controls. Further, the resistance values of the cells 

treated with 25 nM digitoxin had higher absolute values relative to the absolute values of the 

10 nM treated cells. Similarly, the resistance of the cells treated with 40 and 80 nM digitoxin 

underwent drastic changes. Specifically, after an initial increase, a sharp drop was recorded 

at 5 h for the cells exposed to toxic concentrations of digitoxin (i.e., 80 nM). A dramatic loss 

in cellular resistance was observed after about 10 h of exposure and was indicative of an 

acute effect of digitoxin on the cell adhesion or membrane impedance. Complementary, 
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after an initial increase in the resistance of the cells exposed to 40 nM digitoxin, a gradual 

resistance drop was recorded starting at 8 h post-exposure. Further, 40 nM treated cells 

showed a smaller change in the resistance rate when compared to 80 nM digitoxin treated 

cells.

To correlate the observed apoptotic percentage with the real-time analysis of the resistance 

post-exposure to 40 and 80 nM digitoxin, we investigated cellular attachment. Our results 

showed that cells treated with 40 and 80 nM digitoxin exhibited a significant drop in α after 

5 and 9 h of exposure, respectively (Fig. 4B). Our apoptotic data and previous experiments 

correlated such changes to the loss of cellular monolayer resulting from cell death and cell 

de-attachment (Arndt et al., 2004; Stolwijk et al., 2011). Contrary, cells exposed to 10 and 

25 nM digitoxin showed a significant increase in α relative to controls, indicating a 

stimulation of their cellular attachment.

4. Discussion

We hypothesized that exposure to toxic, therapeutic and sub-therapeutic concentrations of 

digitoxin induces changes in NCI-H460 behavior that correlate with digitoxin's 

pharmacological profiles and can be analyzed in real-time. By combining standard cell 

viability and cell-based cytotoxicity assays, we showed that the percentage of apoptotic cells 

was both dose and time-dependent, with significant increases in the apoptotic percentage for 

the cells exposed to 25, 40 and 80 nM digitoxin and minor changes for the cells exposed to 

10 nM relative to controls after 24 h exposure. Further, our results showed a dose-dependent 

decrease in the expression of key cell cycle regulatory protein CDK4 relative to control β-

actin.

By exploiting the naturally evolved sensitivity of the cells and by using the cell as a primary 

transducer, we recorded the changes in cellular behavior as real time changes in cellular 

resistance and adhesion post-exposure to toxic, therapeutic and sub-therapeutic 

concentrations of digitoxin (Arndt et al., 2004; Chen et al., 2012). Our dynamic 

combinatorial analysis showed predominantly proapoptotic and anti-proliferative effects 

upon treatment with toxic and therapeutic concentrations of digitoxin (i.e., 80 and 40 nM) 

confirmed by a sharp drop in resistance. Complementary, the cells treated with sub-

therapeutic concentrations of digitoxin (i.e., 25 and 10 nM) showed a hindered proliferation 

rate and increased cellular adhesion. Changes in α were directly related to the restrictions in 

the AC current caused by changes in the distance between the basal membrane and the ECIS 

electrodes. Cellular detachment and reduction in α post-exposure to 80 and 40 nM digitoxin 

were correlated to changes in nuclear morphology, cellular proliferation and cytotoxicity. 

Digitoxin's concentration-dependent changes illustrated the advantages of continuous 

monitoring provided by ECIS; in particular, the ECIS allowed for intermediate time events 

analysis identifying dramatic losses in cell resistance upon exposure to toxic concentrations 

of digitoxin and increases in the resistance of the cells exposed to sub-therapeutic 

concentrations. These differential cellular responses suggest the existence of threshold 

concentrations associated with either cellular mechanisms responsible for increased cellular 

adhesion or with a dose-dependent cellular inhibition coefficient profile of digitoxin.
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Exposure to CGs is known to cause G1/S or G2 arrests in cancer cells at sub-cytotoxic levels 

(Perrone et al., 2012; Wang et al., 2012). Binding of nuclear CDK4 to cyclin D regulates 

retinoblastoma tumor suppressor (Rb) and E2F group expression that promotes G1/S phase 

transition (Berthet et al., 2006; Jia et al., 2006). Thus, therapeutic targeting of CDK4 in 

cancer cells has been proposed as an effective approach for cancer therapy (Puyol et al., 

2010). Based on the decrease in CDK4 expression and real-time increase in cellular 

resistance upon exposure to 10 and 25 nM digitoxin, we hypothesize that digitoxin targets 

cellular adhesion by changing the subcellular distribution of CDK4 (Gulappa et al., 2013; Si 

and Liu, 2001) (Fig. 5). Our hypothesis is supported by previous studies that showed that 

reduction in the nuclear levels of CDK4 could result from CDK4 sequestration in the 

cytoplasm and CDK4 association with ZONAB (Balda and Matter, 2003). ZONAB is a Y-

box transcription factor whose localization and transcriptional activity is regulated by the 

tight junction-associated candidate tumor suppressor and scaffolding protein zona occluding 

1 (ZO-1) (Bauer et al., 2010; Kremerskothen et al., 2011). ZONAB binds to the Src 

homology 3 (SH3) binding domain of ZO-1 at the cell periphery (Tsukita, 2013; Vinken et 

al., 2011) and helps regulate paracellular permeability (Bauer et al., 2010; Itoh et al., 1997) 

by its indirect participation in the formation of tight, adherent and gap junctions. ZO-1 

interaction with the cytoplasmic domain of occludins (Li et al., 2005), junctional adhesion 

molecule (Mandell et al., 2006) and claudins (Cheung et al., 2012) regulates tight junction 

formation; additionally, ZO-1 interaction with E-cadherin (Priya et al., 2013) and nectine 

(Itoh et al., 1997; Muller et al., 2005) helps in the formation and maintenance of adherence 

junctions while ZO-1 interaction with gap junctions proteins (Abrams and Scherer, 2012; 

Bauer et al., 2010) regulates the formation of gap junctions. Given ZONAB's unaffected 

levels of expression upon cellular exposure to digitoxin (Supplementary information Fig. 

S2), the propensity of ZONAB to bind to ZO-1 and ZO-1's structural role in the basal 

podosomes biogenesis (Kremerskothen et al., 2011), it is also reasonable to assume that 

exposure to digitoxin leads to increased podosome formation that could enhance cell 

adhesion. Increasing ZO-1/ZONAB binding at the cell periphery, and subsequently the 

decrease in the nuclear levels of CDK4 levels would explain both the slow proliferation 

observed for the NCI-H460 cells exposed to 10 nM digitoxin as well as their higher 

adhesion.

Strengthening adhesion following exposure to sub-therapeutic concentrations of digitoxin 

could potentially alter actin nucleation/branching and thus cytoskeleton dynamics 

(González-Mariscal et al., 2007). Previous studies have shown that changes in adhesion and 

cell–cell contacts in neoplastic cells play a key role in cancer cell progression and metastasis 

regulation (Ni et al., 2013; van Nimwegen and van de Water, 2007). Such changes can 

further result in enhancement or re-establishment of the normal cellular function of the 

epithelial cells as well as re-establishment of cell-to-cell junctions (Coradini et al., 2011; 

Zhong and Rescorla., 2012).

Our results thus provide new evidence of digitoxin's potential role in regulating pro-

adhesion through enhancement of CDK4/ZONAB/ZO-1 signaling as one of the basic 

mechanisms for controlling its anti-neoplastic effects. Our results are likely to open new 

avenues in which the suppression of such a signaling pathway might be broadly applied for 
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the next generation of systematic screening of natural compounds with anti-cancer 

capabilities.

5. Conclusions

Our experimental approach intended to correlate the structural and morphological 

characteristics of cells exposed to digitoxin (as recorded by the ECIS system) with their 

functional and metabolic changes (as demonstrated using standard microscopy and cell 

biology assays). This correlation was made possible by the advantages of the ECIS system 

that allowed direct, continuously and noninvasively monitoring of NCI-H460 behavior 

before and after exposure to digitoxin. Our combinatorial analysis showed that exposure to 

toxic, therapeutic and sub-therapeutic concentrations of digitoxin targets cancer cells in a 

dose and time-dependent manner. Specifically, toxic and therapeutic concentrations activate 

anti-proliferative cellular mechanisms, whereas sub-therapeutic concentrations of digitoxin 

increase cellular adhesion. Sequestering CDK4 in the cell cytoplasm reduces cancer cell 

progression. Understanding the underlying anti-neoplastic effects associated with exposure 

to digitoxin can expedite the potential implementation of this CG as a chemotherapeutic 

agent.
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Fig. 1. 
(A) Fluorescent images of Hoechst stained NCI-H460 cells 24 h post-exposure to digitoxin. 

Cells treated with 40 and 80 nM digitoxin showed major changes in their nuclei 

morphologies (white circles) relative to controls or cells treated with 10 and 25 nM 

digitoxin. (B) Percentage of apoptotic cells upon exposure to digitoxin is dose and time-

dependent. Difference is considered significant for *p < 0.05.
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Fig. 2. 
(A) Live cell counts after 24, 48 and 72 h exposure to different concentrations of digitoxin. 

(B) Western blot analysis of CDK4 expression relative to control β-actin 24 h post-exposure 

to digitoxin. (C) Quantification of CDK4 expression levels relative to β-actin. A significant 

difference is indicated for *p < 0.05.
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Fig. 3. 
(A) Schematic illustration of an ECIS array, with a demonstration of the ECIS current 

pathways accounting for the resistance measurements. (B) Representative real-time 

measurements of the normalized resistance mathematically modeled according to the growth 

and spreading behavior of the NCI-H460 cells over the gold electrodes; the standard 

deviation is shown every two and a half hours and represents an average of 16 

measurements (2 arrays with 8 wells each). (C) Real-time changes in α parameter.
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Fig. 4. 
(A) Representative analysis of the real-time behavior of NCI-H460 cells following digitoxin 

exposure. (B) Changes in α parameter post-exposure to digitoxin in real-time; * signifies 

changes considered significant p < 0.05.
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Fig. 5. 
Proposed cellular signaling pathways and regulatory effects between cellular proliferation 

and adhesion upon exposure to sub-therapeutic concentrations of digitoxin. Sequestration of 

CDK4 in cytoplasm by association with ZONAB regulates cell's junction dynamics.
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